1,240 research outputs found

    Asymptotic behavior of Structures made of Plates

    Full text link
    The aim of this work is to study the asymptotic behavior of a structure made of plates of thickness 2δ2\delta when δ0\delta\to 0. This study is carried on within the frame of linear elasticity by using the unfolding method. It is based on several decompositions of the structure displacements and on the passing to the limit in fixed domains. We begin with studying the displacements of a plate. We show that any displacement is the sum of an elementary displacement concerning the normal lines on the middle surface of the plate and a residual displacement linked to these normal lines deformations. An elementary displacement is linear with respect to the variable xx3. It is written U(x)+R(x)x3e3U(^x)+R(^x)\land x3e3 where U is a displacement of the mid-surface of the plate. We show a priori estimates and convergence results when δ0\delta \to 0. We characterize the limits of the unfolded displacements of a plate as well as the limits of the unfolded of the strained tensor. Then we extend these results to the structures made of plates. We show that any displacement of a structure is the sum of an elementary displacement of each plate and of a residual displacement. The elementary displacements of the structure (e.d.p.s.) coincide with elementary rods displacements in the junctions. Any e.d.p.s. is given by two functions belonging to H1(S;R3)H1(S;R3) where S is the skeleton of the structure (the plates mid-surfaces set). One of these functions : U is the skeleton displacement. We show that U is the sum of an extensional displacement and of an inextensional one. The first one characterizes the membrane displacements and the second one is a rigid displacement in the direction of the plates and it characterizes the plates flexion. Eventually we pass to the limit as δ0\delta \to 0 in the linearized elasticity system, on the one hand we obtain a variational problem that is satisfied by the limit extensional displacement, and on the other hand, a variational problem satisfied by the limit of inextensional displacements

    Continuum Electromechanical Modeling of Protein-Membrane Interaction

    Full text link
    A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electro-elastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.Comment: 5 pages, 12 figure

    Adaptive finite element computations of shear band formation

    Get PDF

    A dual weighted residual method applied to complex periodic gratings

    Get PDF
    An extension of the dual weighted residual (DWR) method to the analysis of electromagnetic waves in a periodic diffraction grating is presented. Using the α,0-quasi-periodic transformation, an upper bound for the a posteriori error estimate is derived. This is then used to solve adaptively the associated Helmholtz problem. The goal is to achieve an acceptable accuracy in the computed diffraction efficiency while keeping the computational mesh relatively coarse. Numerical results are presented to illustrate the advantage of using DWR over the global a posteriori error estimate approach. The application of the method in biomimetic, to address the complex diffraction geometry of the Morpho butterfly wing is also discussed

    Edge Element Methods for Maxwell's Equations with Strong Convergence for Gauss' Laws

    Full text link

    Existence theorems in the geometrically non-linear 6-parametric theory of elastic plates

    Full text link
    In this paper we show the existence of global minimizers for the geometrically exact, non-linear equations of elastic plates, in the framework of the general 6-parametric shell theory. A characteristic feature of this model for shells is the appearance of two independent kinematic fields: the translation vector field and the rotation tensor field (representing in total 6 independent scalar kinematic variables). For isotropic plates, we prove the existence theorem by applying the direct methods of the calculus of variations. Then, we generalize our existence result to the case of anisotropic plates. We also present a detailed comparison with a previously established Cosserat plate model.Comment: 19 pages, 1 figur

    On the numerical approximation of p-biharmonic and ∞-biharmonic functions

    Get PDF
    In [KP16] (arXiv:1605.07880) the authors introduced a second-order variational problem in L∞. The associated equation, coined the ∞-Bilaplacian, is a \emph{third order} fully nonlinear PDE given by Δ2∞u:=(Δu)3|D(Δu)|2=0. In this work we build a numerical method aimed at quantifying the nature of solutions to this problem which we call ∞-Biharmonic functions. For fixed p we design a mixed finite element scheme for the pre-limiting equation, the p-Bilaplacian Δ2pu:=Δ(|Δu|p−2Δu)=0. We prove convergence of the numerical solution to the weak solution of Δ2pu=0 and show that we are able to pass to the limit p→∞. We perform various tests aimed at understanding the nature of solutions of Δ2∞u and in 1-d we prove convergence of our discretisation to an appropriate weak solution concept of this problem, that of -solutions

    Rate of Convergence of Space Time Approximations for stochastic evolution equations

    Get PDF
    Stochastic evolution equations in Banach spaces with unbounded nonlinear drift and diffusion operators driven by a finite dimensional Brownian motion are considered. Under some regularity condition assumed for the solution, the rate of convergence of various numerical approximations are estimated under strong monotonicity and Lipschitz conditions. The abstract setting involves general consistency conditions and is then applied to a class of quasilinear stochastic PDEs of parabolic type.Comment: 33 page

    Real time plasma equilibrium reconstruction in a Tokamak

    Get PDF
    The problem of equilibrium of a plasma in a Tokamak is a free boundary problemdescribed by the Grad-Shafranov equation in axisymmetric configurations. The right hand side of this equation is a non linear source, which represents the toroidal component of the plasma current density. This paper deals with the real time identification of this non linear source from experimental measurements. The proposed method is based on a fixed point algorithm, a finite element resolution, a reduced basis method and a least-square optimization formulation

    Identification of nonlinearity in conductivity equation via Dirichlet-to-Neumann map

    Full text link
    We prove that the linear term and quadratic nonlinear term entering a nonlinear elliptic equation of divergence type can be uniquely identified by the Dirichlet to Neuman map. The unique identifiability is proved using the complex geometrical optics solutions and singular solutions
    corecore